By Topic

Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogawa, T. ; PRESTO, Japan Sci. & Technol. Agency, Saitama ; Nagaoka, H.

In this correspondence, we give an alternative proof of the direct part of the classical-quantum channel coding theorem (the Holevo-Schumacher-Westmoreland (HSW) theorem), using ideas of quantum hypothesis testing. In order to show the existence of good codes, we invoke a limit theorem, relevant to the quantum Stein's lemma, in quantum hypothesis testing as the law of large numbers used in the classical case. We also apply a greedy construction of good codes using a packing procedure of noncommutative operators. Consequently we derive an upper bound on the coding error probability, which is used to give an alternative proof of the HSW theorem. This approach elucidates how the Holevo information applies to the classical-quantum channel coding problems

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 6 )