Cart (Loading....) | Create Account
Close category search window
 

High-Resolution 3-D Flood Information From Radar Imagery for Flood Hazard Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Schumann, G. ; Public Res. Centre-Gabriel Lippmann, Belvaux ; Hostache, R. ; Puech, C. ; Hoffmann, L.
more authors

This paper presents a remote-sensing-based steady-state flood inundation model to improve preventive flood-management strategies and flood disaster management. The Regression and Elevation-based Flood Information eXtraction (REFIX) model is based on regression analysis and uses a remotely sensed flood extent and a high-resolution floodplain digital elevation model to compute flood depths for a given flood event. The root mean squared error of the REFIX, compared to ground-surveyed high water marks, is 18 cm for the January 2003 flood event on the River Alzette floodplain (G.D. of Luxembourg), on which the model is developed. Applying the same methodology on a reach of the River Mosel, France, shows that for some more complex river configurations (in this case, a meandering river reach that contains a number of hydraulic structures), piecewise regression is required to yield more accurate flood water-line estimations. A comparison with a simulation from the Hydrologic Engineering Centers River Analysis System hydraulic flood model, calibrated on the same events, shows that, for both events, the REFIX model approximates the water line reliably

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.