By Topic

Random Telegraph Signal in Flash Memory: Its Impact on Scaling of Multilevel Flash Memory Beyond the 90-nm Node

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Threshold-voltage (Vth) fluctuation due to random telegraph signal (RTS) in flash memory was observed for the first time. A large amount of data of Vth fluctuation was acquired by using a 90-nm-node memory array, and it was confirmed that a few memory cells have large RTS fluctuation exceeding 0.2 V. It was found that program-and-erase cycles increase Vth amplitude in a flash memory. It was also found by simulation and measurement that tail-bits are generated due to RTS in multilevel flash operation. The amount of Vth broadening due to the tail-bits was estimated to become larger as the scaling of memory cells advances and reaches more than 0.3 V in the 45-nm node. These results thus demonstrate that RTS will become a prominent issue in designing multilevel flash memory in the 45-nm node and beyond.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 6 )