By Topic

A 1.2-V 37–38.5-GHz Eight-Phase Clock Generator in 0.13- μm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lan-Chou Cho ; Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei ; Chihun Lee ; Shen-Iuan Liu

A 37-38.5-GHz clock generator is presented in this paper. An eight-phase LC voltage-controlled oscillator (VCO) is presented to generate the multiphase outputs. The high-pass characteristic CL ladder topology sustains the high-frequency signals. The split-load divider is presented to extend the input frequency range. The proposed PD improves the static phase error and enhances the gain. To verify the function of each block and modify the operation frequency, two additional testing components-an eight-phase VCO and a split-load frequency divider-are fabricated using 0.13-mum CMOS technology. The measured quadrature-phase outputs of VCO and input sensitivity of the divider are presented. This clock generator has been fabricated with 0.13-mum CMOS technology. The measured rms clock jitter is 0.24 ps at 38 GHz while consuming 51.6 mW without buffers from a 1.2-V supply. The measured phase noise is -97.55 dBc/Hz at 1-MHz offset frequency

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 6 )