Cart (Loading....) | Create Account
Close category search window
 

On-Chip Liquid Cooling With Integrated Pump Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, the capability of a novel cooling system for microchannels based on the principle of electrowetting is examined. To start with, the elcctrowetting effect in microchannels is experimentally investigated. The used electrowetting system consists of a liquid droplet deposited on a conductive Si substrate and electrically insulated from this substrate by a dielectric, layer. Microchannels of 100 mum times 100 mum are etched in the substrate. By applying an ac voltage signal between the droplet and the substrate, the microchannels can be periodically tilled and emptied with the liquid of the droplet. This oscillating liquid flow will be used to cool the chip. For the 100 mum times 100 mum microchannels a voltage of 51 V is required for the actuation. Further, based upon the results of the filling of the channels the cooling capacity of the proposed system is theoretically investigated. The theoretically achievable cooling rate of this enhanced system is compared to the heat transfer by conduction through a silicon substrate. A critical filing period is found; for shorter filling periods, the heat transfer will be improved by inserting microchannels, for higher filling periods the electrowetting deteriorates the cooling. It can be concluded that the proposed system is promising, especially when frequencies in the range of a few Hz can be achieved.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 2 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.