By Topic

Rudimentary Finite Element Thermal Modeling of Platelet-Filled Polymer-Ceramic Composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hill, R.F. ; Laird Technol. Inc., Cleveland ; Strader, J.L.

In order to improve the thermal performance of polymeric materials, they can be filled with intrinsically high thermal conductivity fillers that provide heat-conducting paths through the resulting composite. The thermal performance of polymers loaded with platelet-shaped fillers was modeled using finite element analysis in order to provide a prediction of thermal conductivity as a function of variables such as filler thermal conductivity, orientation, and polymer matrix thermal conductivity. Modeling results were compared to experimental data. An unexpectedly strong effect that the matrix conductivity has on the conductivity of the polymer-ceramic composite was predicted by modeling and confirmed experimentally.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 2 )