By Topic

Design-for-Test Techniques for Opens in Undetected Branches in CMOS Latches and Flip-Flops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramirez, A.Z. ; Intel Techologia de Mexico, Jalisco ; Espinosa, G. ; Champac, V.

In this paper, a design-for-testability (DFT) technique to test open defects in otherwise undetectable faulty branches in fully static CMOS latches and flip-flops is proposed. The main benefits of our proposal are: 1) it is able to detect a parametric range of resistive opens defects and 2) the performance degradation is very low. The testability of the added DFT circuitry is also addressed. The cost of the proposed technique in terms of speed degradation, area overhead, and extra pins is analyzed. Comparison with other previously proposed testable latches is carried out. Circuits with the proposed technique have been designed and fabricated. Good agreement is observed between the analytical analysis, simulations and experimental measures performed on the fabricated circuits.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 5 )