By Topic

Bandwidth Sharing Schemes for Multimedia Traffic in the IEEE 802.11e Contention-Based WLANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Xiao ; Univ. of Alabama, Tuscaloosa ; Haizhon Li, F. ; Bo Li

Bandwidth allocation schemes have been well studied for mobile cellular networks. However, there is no study about this aspect reported for IEEE 802.11 contention-based distributed wireless LANs. In cellular networks, bandwidth is deterministic in terms of the number of channels by frequency division, time division, or code division. On the contrary, bandwidth allocation in contention- based distributed wireless LANs is extremely challenging due to its contention-based nature, packet-based network, and the most important aspect: only one channel is available, competed for by an unknown number of stations. As a consequence, guaranteeing bandwidth and allocating bandwidth are both challenging issues. In this paper, we address these difficult issues. We propose and study nine bandwidth allocation schemes, called sharing schemes, with guaranteed Quality of Service (QoS) for integrated voice/video/data traffic in IEEE 802.11e contention-based distributed wireless LANs. A guard period is proposed to prevent bandwidth allocation from overprovisioning and is for best-effort data traffic. Our study and analysis show that the guard period is a key concept for QoS guarantees in a contention-based channel. The proposed schemes are compared and evaluated via extensive simulations.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 7 )