By Topic

Lexicographic Maxmin Fairness for Data Collection in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shigang Chen ; Univ. of Florida, Gainesville ; Yuguang Fang ; Xia, Y.

The ad hoc deployment of a sensor network causes unpredictable patterns of connectivity and varied node density, resulting in uneven bandwidth provisioning on the forwarding paths. When congestion happens, some sensors may have to reduce their data rates. It is an interesting but difficult problem to determine which sensors must reduce rates and how much they should reduce. This paper attempts to answer a fundamental question about congestion resolution: What are the maximum rates at which the individual sensors can produce data without causing congestion in the network and unfairness among the peers? We define the maxmin optimal rate assignment problem in a sensor network, where all possible forwarding paths are considered. We provide an iterative linear programming solution, which finds the maxmin optimal rate assignment and a forwarding schedule that implements the assignment in a low-rate sensor network. We prove that there is one and only one such assignment for a given configuration of the sensor network. We also study the variants of the maxmin fairness problem in sensor networks.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:6 ,  Issue: 7 )