By Topic

Theoretical development and experimental verification of a DC-AC electronically rectified load-generator system model compatible with common network analysis software packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A method for modeling electronically commutated DC-AC load-rectifier-generator systems is presented. The method is based on a modified form of Park's d-q-o transformation, and yields an equivalent system network which is compatible with most commonly known network analysis software packages. The method was used to develop a model for the simulation of the dynamic steady-state performance of a DC-AC system consisting of a 30 kVA, three-phase, 208 V, four-pole, 400 Hz generator feeding a rectifier-load system. The system was tested in the laboratory under various DC and combined DC-AC load conditions. The results of the simulation model reveal a dynamic steady-state performance of the load-rectifier-generator system, in very good agreement with the test results. The applicability of the method and model to other electronically controlled machine systems is discussed in the light of those results

Published in:

IEEE Transactions on Energy Conversion  (Volume:3 ,  Issue: 1 )