By Topic

Circuit-Level Modeling and Detection of Metallic Carbon Nanotube Defects in Carbon Nanotube FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hashempour, H. ; Independent Researcher, Tehran ; Lombardi, Fabrizio

Carbon nanotube field effect transistors (CNTFET) are promising nano-scaled devices for implementing high performance, very dense and low power circuits. The core of a CNTFET is a carbon nanotube. Its conductance property is determined by the so-called chirality of the tube; chirality is difficult to control during manufacturing. This results in conducting (metallic) nanotubes and defective CNTFETs similar to stuck-on (SON or source-drain short) faults, as encountered in classical MOS devices. This paper studies this phenomenon by using layout information and presents modeling and detection methodologies for nano-scaled defects arising from the presence of metallic carbon nanotubes. For CNTFET-based circuits (e.g. intramolecular), these defects are analyzed using a traditional stuck-at fault model. This analysis is applicable to primitive and complex gates. Simulation results are presented for detecting modeled metallic nanotube faults in CNTFETs using a single stuck-at fault test set. A high coverage is achieved (~98%)

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE '07

Date of Conference:

16-20 April 2007