Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A Cross-Referencing-Based Droplet Manipulation Method for High-Throughput and Pin-Constrained Digital Microfluidic Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Xu ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Chakrabarty, K.

Digital microfluidic biochips are revolutionizing high-throughput DNA sequencing, immunoassays, and clinical diagnostics. As high-throughput bioassays are mapped to digital microfluidic platforms, the need for design automation techniques for pin-constrained biochips is being increasingly felt. However, most prior work on biochips CAD has assumed independent control of the underlying electrodes using a large number of (electrical) input pins. The authors propose a droplet manipulation method based on a "cross-referencing" addressing method that uses "row" and "columns" to access electrodes. By mapping the droplet movement problem to the clique partitioning problem from graph theory, the proposed method allows simultaneous movement of a large number of droplets on a microfluidic array. This in turn facilitates high-throughput applications on a pin-constrained biochip. The authors use random synthetic benchmarks and a set of multiplexed bioassays to evaluate the proposed method

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE '07

Date of Conference:

16-20 April 2007