Cart (Loading....) | Create Account
Close category search window

Fast Memory Footprint Estimation based on Maximal Dependency Vector Calculation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hu, Q. ; Norwegian Univ. of Sci. & Technol., Trondheim ; Vandecappelle, A. ; Kjeldsberg, P.G. ; Catthoor, F.
more authors

In data dominated applications, loop transformations have a huge impact on the lifetime of array data and therefore on memory footprint. Since a locally optimal loop transformation may have a detrimental effect somewhere else, many alternative loop transformations need to be explored. Therefore, estimation of the memory footprint is essential, and this estimation has to be fast. This paper presents a fast array based memory footprint estimation technique based on counting of iteration nodes in an iteration domain constrained by a maximal lifetime. The maximal lifetime is defined by the maximal dependency vector (MDV) of the array for a given execution ordering. We further present for the first time two approaches for calculation of the MDV: a general approach based on an ILP formulation and a novel vertexes approach when iteration domains are approximated by bounding boxes. Experiments on practical test vehicles demonstrate that the estimation based on our vertexes approach is extremely fast, on average two orders of magnitude faster than the compared approaches, while still keeping the accuracy high. This enables system-level data memory footprint exploration of many different alternative transformed program codes, within interactive time limits, and on realistic complex applications

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE '07

Date of Conference:

16-20 April 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.