Cart (Loading....) | Create Account
Close category search window

Pulsed CO/sub 2/ laser ablation of tissue: effect of mechanical properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Walsh, J.T., Jr. ; Massachusetts Gen. Hospital, Boston, MA, USA ; Deutsch, Thomas F.

The ablation rate of guinea pig skin and bovine aorta, myocardium, and liver by a CO 2 laser emitting 2- mu s-long pulses was quantified. Ablation efficiency was found to be strongly dependent on the ultimate tensile strength of the tissue; the ablation efficiency of liver is seven times that of skin. Gluteraldehyde cross linking of skin, which is known to greatly increase tissue stiffness but not significantly affect ultimate tensile strength, did not change the ablation rate. The water content of the tissues, which largely determines the optical and thermal properties, was measured and found to vary only slightly. The results demonstrate that tissue mechanical properties are important in the interpretation and modeling of pulsed laser ablation of tissue and that variations in these mechanical properties can lead to drastically different cutting rates for different tissues.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 12 )

Date of Publication:

Dec. 1989

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.