By Topic

A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi Tian ; Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931 USA, ; Georgios B. Giannakis

In cognitive radio networks, the first cognitive task preceding any form of dynamic spectrum management is the sensing and identification of spectrum holes in wireless environments. This paper develops a wavelet approach to efficient spectrum sensing of wideband channels. The signal spectrum over a wide frequency band is decomposed into elementary building blocks of subbands that are well characterized by local irregularities in frequency. As a powerful mathematical tool for analyzing singularities and edges, the wavelet transform is employed to detect and estimate the local spectral irregular structure, which carries important information on the frequency locations and power spectral densities of the subbands. Along this line, a couple of wideband spectrum sensing techniques are developed based on the local maxima of the wavelet transform modulus and the multi-scale wavelet products. The proposed sensing techniques provide an effective radio sensing architecture to identify and locate spectrum holes in the signal spectrum

Published in:

2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications

Date of Conference:

8-10 June 2006