By Topic

Skin optics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
van Gemert, M.J.C. ; Acad. Med. Centre, Amsterdam, Netherlands ; Jacques, Steven L. ; Sterenborg, H.J.C.M. ; Star, W.M.

The current status of tissue optics is reviewed, distinguishing among the cases of dominant absorption, dominant scattering, and scattering about equal to absorption. Previously published data as well as some current unpublished data on (human) stratum corneum, epidermis, and dermis are collected and/or (re)analyzed in terms of absorption coefficient, scattering coefficient, and anisotropy scattering factor. It is found that the individual skin layers show strongly forward scattering (anisotropy factors between 0.7 and 0.9). The absorption and scattering data show that for all wavelengths considered, scattering is much more important than absorption. Solutions to the transport equation for a multilayer skin model and finite beam laser irradiation that take this into account are not yet available. Hence, any quantitative dosimetry for skin treated with (laser) light is inaccurate.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 12 )