By Topic

A Decision-Making Framework for Control Strategies in Probabilistic Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Timothy H. Chung ; California Institute of Technology, Pasadena, CA 91125, USA. ; Joel W. Burdick

This paper presents the search problem formulated as a decision problem, where the searcher decides whether the target is present in the search region, and if so, where it is located. Such decision-based search tasks are relevant to many research areas, including mobile robot missions, visual search and attention, and event detection in sensor networks. The effect of control strategies in search problems on decision-making quantities, namely time-to-decision, is investigated in this work. We present a Bayesian framework in which the objective is to improve the decision, rather than the sensing, using different control policies. Furthermore, derivations of closed-form expressions governing the evolution of the belief function are also presented. As this framework enables the study and comparison of the role of control for decision-making applications, the derived theoretical results provide greater insight into the sequential processing of decisions. Numerical studies are presented to verify and demonstrate these results

Published in:

Proceedings 2007 IEEE International Conference on Robotics and Automation

Date of Conference:

10-14 April 2007