By Topic

SURF features for efficient robot localization with omnidirectional images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murillo, A.C. ; DIIS, Zaragoza Univ. ; Guerrero, J.J. ; Sagues, C.

Many robotic applications work with visual reference maps, which usually consist of sets of more or less organized images. In these applications, there is a compromise between the density of reference data stored and the capacity to identify later the robot localization, when it is not exactly in the same position as one of the reference views. Here we propose the use of a recently developed feature, SURF, to improve the performance of appearance-based localization methods that perform image retrieval in large data sets. This feature is integrated with a vision-based algorithm that allows both topological and metric localization using omnidirectional images in a hierarchical approach. It uses pyramidal kernels for the topological localization and three-view geometric constraints for the metric one. Experiments with several omnidirectional images sets are shown, including comparisons with other typically used features (radial lines and SIFT). The advantages of this approach are proved, showing the use of SURF as the best compromise between efficiency and accuracy in the results.

Published in:

Robotics and Automation, 2007 IEEE International Conference on

Date of Conference:

10-14 April 2007