Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fulgenzi, C. ; Lab. d''Informatique de Grenoble, INRIA, Rhone-Alpes ; Spalanzani, A. ; Laugier, C.

Most of present work for autonomous navigation in dynamic environment doesn't take into account the dynamics of the obstacles or the limits of the perception system. To face these problems we applied the probabilistic velocity obstacle (PVO) approach (Kluge and Prassler, 2004) to a dynamic occupancy grid. The paper presents a method to estimate the probability of collision where uncertainty in position, shape and velocity of the obstacles, occlusions and limited sensor range contribute directly to the computation. A simple navigation algorithm is then presented in order to apply the method to collision avoidance and goal driven control. Simulation results show that the robot is able to adapt its behaviour to the level of available knowledge and navigate safely among obstacles with a constant linear velocity. Extensions to non-linear, non-constant velocities are proposed.

Published in:

Robotics and Automation, 2007 IEEE International Conference on

Date of Conference:

10-14 April 2007