By Topic

Stability Boundary for Haptic Rendering: Influence of Damping and Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gil, J.J. ; CEIT & TECNUN, Navarra Univ., San Sebastian ; Sanchez, E. ; Hulin, T. ; Preusche, C.
more authors

The influence of viscous damping and delay on the stability of haptic systems is studied in this paper. The stability boundaries have been found by means of different approaches. Although the shape of these stability boundaries is quite complex, a new linear condition which summarizes the relation between virtual stiffness, viscous damping and delay is proposed. This condition is independent of the mass of the haptic device. The theoretical results are supported by simulations and experimental data using the DLR light-weight robot.

Published in:

Robotics and Automation, 2007 IEEE International Conference on

Date of Conference:

10-14 April 2007