By Topic

The Power of Priority: NoC Based Distributed Cache Coherency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bolotin, E. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa ; Guz, Z. ; Cidon, I. ; Ginosar, R.
more authors

The paper introduces network-on-chip (NoC) design methodology and low cost mechanisms for supporting efficient cache access and cache coherency in future high-performance chip multi processors (CMPs). We address previously proposed CMP architectures based on non uniform cache architecture (NUCA) over NoC, analyze basic memory transactions and translate them into a set of network transactions. We first show how a simple, generic NoC which is equipped with needed module interface functionalities can provide infrastructure for the coherent access of both static and dynamic NUCA. Then we show how several low cost mechanisms incorporated into such a vanilla NoC can facilitate CMP and boost performance of a cache coherent NUCA CMP. The basic mechanism is based on priority support embedded in the NoC, which differentiates between short control signals and long data messages to achieve a major reduction in cache access delay. The low cost priority-based NoC is extremely useful for increasing performance of almost any other CMP transaction. Priority-based NoC along with the discussed NoC interfaces are evaluated in detail using CMP-NoC simulations across several SPLASH-2 benchmarks and static Web content serving benchmarks showing substantial L2 cache access delay reduction and overall program speedup

Published in:

Networks-on-Chip, 2007. NOCS 2007. First International Symposium on

Date of Conference:

7-9 May 2007