By Topic

Transaction-Based Communication-Centric Debug

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The behaviour of systems on chip (SOC) is complex because they contain multiple processors that interact through concurrent interconnects, such as networks on chip (NOC). Debugging such SOCs is hard. Based on a classification of debug scope and granularity, we propose that debugging should be communication-centric and based on transactions. Communication-centric debug focuses on the communication and the synchronisation between the IP blocks, which are implemented by the interconnect using transactions. We define and implement a modular debug architecture, based on NOC, monitors, and a dedicated high-speed event-distribution broadcast interconnect. The manufacturing-test scan chains and IEEE1149.1 test access ports (TAP) are re-used for configuration and debug data read-out. Our debug architecture requires only small changes to the functional architecture. The additional area cost is limited to the monitors and the event distribution interconnect, which are 4.5% of the NOC area, or less than 0.2% of the SOC area. The debug architecture runs at NOC functional speed and reacts very quickly to debug events to stop the SOC close in time to the condition that raised the event. The speed at which data is retrieved from the SOC after stopping using the TAP is 10 MHz. We prove our concepts and architecture with a gate-level implementation that includes the NOC, event distribution interconnect, and clock, reset, and TAP controllers. We include gate-level signal traces illustrating debug at message and transaction levels

Published in:

Networks-on-Chip, 2007. NOCS 2007. First International Symposium on

Date of Conference:

7-9 May 2007