By Topic

Time-Predictable Task Preemption for Real-Time Systems with Direct-Mapped Instruction Cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kirner, R. ; Inst. fur Technische Informatik, Technische Univ., Wien ; Puschner, P.

Modern processors used in embedded systems are becoming increasingly powerful, having features like caches and pipelines to speedup execution. While execution speed of embedded software is generally increasing, it becomes more and more complex to verify the correct temporal behavior of software, running on this high-end embedded computer systems. To achieve time-predictability the authors introduced a very rigid software execution model with distribution being realized based on the time-triggered communication model. In this paper we analyze the time-predictability of a preempting task-activation, running on a hardware with direct-mapped instruction caches. As one result we analyze why a task-preemption driven by a clock interrupt is not suitable to guarantee time-predictability. As a second result, we present a time-predictable task-preemption driven by an instruction counter.

Published in:

Object and Component-Oriented Real-Time Distributed Computing, 2007. ISORC '07. 10th IEEE International Symposium on

Date of Conference:

7-9 May 2007