Cart (Loading....) | Create Account
Close category search window

Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ho, Y.-L.D. ; Dept. of Electr. & Electron. Eng., Bristol Univ. ; Tun Cao ; Ivanov, P.S. ; Cryan, M.J.
more authors

We present the results of calculations of the microcavity mode structure of distributed-Bragg-reflector (DBR) micro-pillar microcavities of group III-V semiconductor materials. These structures are suitable for making single photon sources when a single quantum dot is located at the center of a wavelength scale cavity. The 3-D finite difference time domain (FDTD) method is our primary simulation tool and results are validated against semi-analytic models. We show that high light extraction efficiencies can be achieved (>90%) limited by sidewall scattering and leakage. Using radial trench DBR microcavities or 2-D photonic crystal structures, we can further suppress sidewall emission, however, light is then redirected into other leaky modes

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.