By Topic

Magnetic Equivalent Circuit Modeling of Induction Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sudhoff, S.D. ; Dept. of Electr. & Comput. Eng, Purdue Univ., West Lafayette, IN ; Kuhn, B.T. ; Corzine, K.A. ; Branecky, B.T.

Finite element models are invaluable for determining expected machine performance. However, finite element analysis can be computationally intense; particularly if a large numbers of studies or high bandwidth studies are required. One method to avoid this difficulty is to extract machine parameters from the finite element model and use the parameters in lumped parameter models. While often useful, such an approach does not represent space harmonics or asymmetries in the motor. A methodology for constructing a state-variable model, based on a magnetic equivalent circuit of the motor is described herein. In addition, the parameters for this model are based solely on geometrical data. This approach is an excellent compromise between the speed of lumped parameter models and the ability of finite element methods to capture spatial effects. Experimental validation of the model is provided.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:22 ,  Issue: 2 )