By Topic

Incorporating the Effects of Magnetic Saturation in a Coupled-Circuit Model of a Claw–Pole Alternator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hua Bai ; Linear Technol. Corp., Milpitas, CA ; Steven D. Pekarek ; Jerry Tichenor ; Walter Eversman
more authors

A method of representing the effects of magnetic saturation in a coupled-circuit model of a claw-pole alternator is presented. In the approach considered, the airgap flux density produced by each winding is expressed as a function of magnetic operating point. A challenge in the implementation is that the airgap flux densities consist of several significant harmonics, each of which changes at a distinct rate as iron saturates. Despite this complication, it is shown that relatively simple measurements can be used to determine model parameters. The model is implemented in the analysis of several alternator/rectifier systems using a commercial state-model-based circuit analysis program. Comparisons with experimental results over a wide range of speeds and operating conditions demonstrate its accuracy in predicting both the steady state and transient behavior of the systems.

Published in:

IEEE Transactions on Energy Conversion  (Volume:22 ,  Issue: 2 )