By Topic

Content-aware resource allocation and packet scheduling for video transmission over wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pahalawatta, P. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL ; Berry, R. ; Pappas, T. ; Katsaggelos, A.

A cross-layer packet scheduling scheme that streams pre-encoded video over wireless downlink packet access networks to multiple users is presented. The scheme can be used with the emerging wireless standards such as HSDPA and IEEE 802.16. A gradient based scheduling scheme is used in which user data rates are dynamically adjusted based on channel quality as well as the gradients of a utility function. The user utilities are designed as a function of the distortion of the received video. This enables distortion-aware packet scheduling both within and across multiple users. The utility takes into account decoder error concealment, an important component in deciding the received quality of the video. We consider both simple and complex error concealment techniques. Simulation results show that the gradient based scheduling framework combined with the content-aware utility functions provides a viable method for downlink packet scheduling as it can significantly outperform current content-independent techniques. Further tests determine the sensitivity of the system to the initial video encoding schemes, as well as to non-real-time packet ordering techniques.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 4 )