By Topic

Adaptive reliable H control for linear time-delay systems via memory state feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ye, D. ; Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang ; Yang, G.H.

The reliable controller design problem for continuous-time linear systems with time delay and actuator faults is considered, based on a linear matrix inequality (LMI) technique and an adaptive method. A new delay-dependent memory state-feedback reliable controller is established in a parameter-dependent form, in which fault parameters are adjusted online based on an adaptive method to compensate automatically the fault effect on system. In the framework of the LMI technique, the stability and Hinfin performance of closed-loop systems are guaranteed in normal and faulty cases. A numerical example and its simulations are given to illustrate the effectiveness of the proposed method

Published in:

Control Theory & Applications, IET  (Volume:1 ,  Issue: 3 )