Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

An Approximate and Efficient Method for Optimal Rotation Alignment of 3D Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kazhdan, M. ; Johns Hopkins Univ., Baltimore

In many shape analysis applications, the ability to find the best rotation that aligns two models is an essential first step in the analysis process. In the past, methods for model alignment have either used normalization techniques, such as PCA alignment, or have performed an exhaustive search over the space of rotation to find the best optimal alignment. While normalization techniques have the advantage of efficiency, providing a quick method for registering two shapes, they are often imprecise and can give rise to poor alignments. Conversely, exhaustive search is guaranteed to provide the correct answer, but, even using efficient signal processing techniques, this type of approach can be prohibitively slow. In this paper, we present a new method for aligning two 3D shapes. We show that the method is markedly faster than existing approaches based on efficient signal processing and we provide registration results demonstrating that the alignments obtained using our method have a high degree of precision and are markedly better than those obtained using normalization.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 7 )