Cart (Loading....) | Create Account
Close category search window
 

Robust Image Segmentation Using Resampling and Shape Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zoller, T. ; Fraunhofer Inst. for Intelligent Anal. & Inf. Syst., Sanki Augustin ; Buhmann, J.M.

Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. We propose an integrated approach for image segmentation based on a generative clustering model combined with coarse shape information and robust parameter estimation. The sensitivity of segmentation solutions to image variations is measured by image resampling. Shape information is included in the inference process to guide ambiguous groupings of color and texture features. Shape and similarity-based grouping information is combined into a semantic likelihood map in the framework of Bayesian statistics. Experimental evidence shows that semantically meaningful segments are inferred even when image data alone gives rise to ambiguous segmentations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.