Cart (Loading....) | Create Account
Close category search window
 

Particle Filtering for Multisensor Data Fusion With Switching Observation Models: Application to Land Vehicle Positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Caron, F. ; INRIA-FUTURS, CNRS, Lille ; Davy, Manuel ; Duflos, E. ; Vanheeghe, P.

This paper concerns the sequential estimation of a hidden state vector from noisy observations delivered by several sensors. Different from the standard framework, we assume here that the sensors may switch autonomously between different sensor states, that is, between different observation models. This includes sensor failure or sensor functioning conditions change. In our model, sensor states are represented by discrete latent variables, whose prior probabilities are Markovian. We propose a family of efficient particle filters, for both synchronous and asynchronous sensor observations as well as for important special cases. Moreover, we discuss connections with previous works. Lastly, we study thoroughly a wheel land vehicle positioning problem where the GPS information may be unreliable because of multipath/masking effects

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.