By Topic

GLRT-Based Direction Detectors in Homogeneous Noise and Subspace Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bandiera, F. ; Dipt. di Ingegneria dell''Innovazione, Universita del Salento, Lecce ; Besson, O. ; Orlando, D. ; Ricci, G.
more authors

In this paper, we derive and assess decision schemes to discriminate, resorting to an array of sensors, between the H0 hypothesis that data under test contain disturbance only (i.e., noise plus interference) and the H1 hypothesis that they also contain signal components along a direction which is a priori unknown but constrained to belong to a given subspace of the observables. The disturbance is modeled in terms of complex normal random vectors plus deterministic interference assumed to belong to a known subspace. We assume that a set of noise-only (secondary) data is available, which possess the same statistical characterization of noise in the cells under test. At the design stage, we resort to either the plain generalized-likelihood ratio test (GLRT) or the two-step GLRT-based design procedure. The performance analysis, conducted resorting to simulated data, shows that the one-step GLRT performs better than the detector relying on the two-step design procedure when the number of secondary data is comparable to the number of sensors; moreover, it outperforms a one-step GLRT-based subspace detector when the dimension of the signal subspace is sufficiently high

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 6 )