By Topic

Precise Investigation of Domain Pinning Energy in GaMnAs Using Planar Hall Effect and Magnetoresistance Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shin, D.Y. ; Dept. of Phys., Korea Univ., Seoul ; Chung, S.J. ; Lee, S. ; Liu, X.
more authors

The planar Hall effect (PHE) and magnetoresistance (MR) measurements have been carried out on a GaMnAs ferromagnetic semiconductor. The PHE and MR spectra exhibit interesting two-step magnetization switching behavior arising from the magnetic anisotropy properties of the system. By fitting the angle-dependent planar Hall resistance (PHR) data taken at 5 kG with the Stoner-Wohlfarth model, the cubic and uniaxial anisotropy constants were independently obtained. The anisotropy constants lead to the precise determination of easy axis direction, which turns out to be in good agreement with the easy axis determined from the angular plot of the switching field. The domain pinning energies were further obtained by fitting the angle dependence of the switching field, including the effect of uniaxial anisotropy

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 6 )