By Topic

Chemical and Magnetic Interface Properties of Tunnel Junctions With Co2 MnSi/Co2FeSi Multilayer Electrode Showing Large Tunneling Magnetoresistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Transport, as well as chemical and magnetic interface properties of two kinds of magnetic tunnel junctions (MTJs) with Co2FeSi electrode, Al-O barrier, and Co-Fe counter electrode, are investigated. For junctions with Co2FeSi single-layer electrodes, a tunnel magnetoresistance of up to 52% is found after optimal annealing for an optimal Al thickness of 1.5 nm, whereas the room temperature bulk magnetization of the Co2FeSi film reaches only 75% of the expected value. By using a [Co2MnSi/Co2FeSi]times10 multilayer electrode, the magnetoresistance can be increased to 114%, corresponding to a large spin polarization of 0.74, and the full bulk magnetization is reached. For Al thickness smaller than 1 nm, the TMR of both kinds of MTJs decreases rapidly to zero. On the other hand, for 2- to 3-nm-thick Al, the TMR decreases only slowly. The Al thickness dependence of the TMR is directly correlated to the element-specific magnetic moments of Fe and Co at the Co2FeSi/Al-O interface for all Al thickness. Especially, for optimal Al thickness and annealing, the interfacial Fe moment of the single-layer electrode is about 20% smaller than for the multilayer electrode, indicating smaller atomic disorder at the barrier interface for the latter MTJ.

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 6 )