By Topic

Synthesis of Ibuprofen Loaded Magnetic Solid Lipid Nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pang, X.J. ; Adv. Mater. Res. Inst., New Orleans Univ., LA ; Zhou, J. ; Chen, J.J. ; Yu, M.H.
more authors

Ibuprofen loaded magnetic solid lipid nanoparticles (Ib-MSLNs) were successfully fabricated using a two-step method: 1)preparation of a warm O/W microemulsion (aqueous surfactant solution with a lipid phase, containing Ibuprofen, stearic acid, 1-octadecanol and lecithin) in which modified lipophilic magnetite (Fe3O4) nanoparticles were incorporated, and 2)formation of MSLNs by dispersing the warm microemulsion in cold water under mechanical stirring. The Ib-MSLNs were characterized by transmission electron microscopy, X-ray powder diffraction (XRD), and superconducting quantum interference device (SQUID) magnetometer. TEM and XRD results showed that SLN nanoparticles embedded with magnetic nanoparticles was successfully formed. SQUID measurements indicated that Ib-MSLN exhibited superparamagnetic behavior with a blocking temperature of 98 K. The encapsulation efficiency was measured by high pressure liquid chromatography (HPLC). The magnetite-loaded solid lipid nanoparticles can be potentially used in drug targeting and controlled releasing.

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 6 )