By Topic

First- and Second-Order Moments of the Normalized Sample Covariance Matrix of Spherically Invariant Random Vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bausson, S. ; Groupe d''Electromagnetisme Applique, Univ. Paris X, Ville D''Avray ; Pascal, F. ; Forster, P. ; Ovarlez, J.
more authors

Under Gaussian assumptions, the sample covariance matrix (SCM) is encountered in many covariance based processing algorithms. In case of impulsive noise, this estimate is no more appropriate. This is the reason why when the noise is modeled by spherically invariant random vectors (SIRV), a natural extension of the SCM is extensively used in the literature: the well-known normalized sample covariance matrix (NSCM), which estimates the covariance of SIRV. Indeed, this estimate gets rid of a fluctuating noise power and is widely used in radar applications. The aim of this paper is to derive closed-form expressions of the first- and second-order moments of the NSCM

Published in:

Signal Processing Letters, IEEE  (Volume:14 ,  Issue: 6 )