By Topic

Securing Cooperative Ad-Hoc Networks Under Noise and Imperfect Monitoring: Strategies and Game Theoretic Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Yu ; Microsoft Corp., Redmond, WA ; Zhu Ji ; Liu, K.J.R.

In cooperative ad-hoc networks, nodes belong to the same authority and pursue the common goals, and will usually unconditionally help each other. Consequently, without necessary countermeasures, such networks are extremely vulnerable to insider attacks, especially under noise and imperfect monitoring. In this paper, we present a game theoretic analysis of securing cooperative ad-hoc networks against insider attacks in the presence of noise and imperfect monitoring. By focusing on the most basic networking function, namely routing and packet forwarding, we model the interactions between good nodes and insider attackers as secure routing and packet forwarding games. The worst case scenarios are studied where initially good nodes do not know who the attackers are while insider attackers know who are good. The optimal defense strategies have been devised in the sense that no other strategies can further increase the good nodes' payoff under attacks. Meanwhile, the optimal attacking strategies and the maximum possible damage that can be caused by attackers have been discussed. Extensive simulation studies have also been conducted to evaluate the effectiveness of the proposed strategies

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:2 ,  Issue: 2 )