By Topic

Image Denoising Based on A Mixture of Bivariate Gaussian Models in Complex Wavelet Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rabbani, H. ; Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran ; Vafadoost, M. ; Selesnick, I. ; Gazor, S.

Recently, it has been shown that algorithms exploiting dependencies between coefficients for modeling probability density function (pdf) of wavelet coefficients, could achieve better results for image denoising in wavelet domain compared with the ones based on the independence assumption. In this context, we design a bivariate maximum a posteriori (MAP) estimator which relies on a mixture of bivariate Gaussian models. This model not only is bivariate but also is mixture and therefore, using this new statistical model, we are able to better capture heavy-tailed natures of the data as well as the interscale dependencies of wavelet coefficients. The simulation results show that our proposed technique achieves better performance than several published methods both visually and in terms of peak signal-to-noise ratio (PSNR).

Published in:

Medical Devices and Biosensors, 2006. 3rd IEEE/EMBS International Summer School on

Date of Conference:

4-6 Sept. 2006