By Topic

Performance Analysis of Optimum and Suboptimum Selection Diversity Schemes on Rayleigh Fading Channels With Imperfect Channel Estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramesh Annavajjala ; ArrayComm LLC, San Jose, CA ; Laurence B. Milstein

In this paper, we present a comparative analysis on the effects of channel estimation errors on the performance of optimum and suboptimum selection diversity (SD) receivers on Rayleigh-fading channels. By modeling the estimation errors as independent complex Gaussian random variables, we derive simple closed-form expressions for the average probability of error for both optimum and suboptimum SD schemes with noisy channel estimates. With dual diversity and imperfect estimates, we establish a connection between optimum SD and maximal-ratio combining (MRC), and between suboptimum SD and equal-gain combining diversity schemes. Interestingly, we show that the optimum SD receiver structure and the resulting performance for differential binary coherent phase-shift keying (DBPSK) signaling can be obtained, in a straightforward way, as a special case of the performance of the optimum SD scheme with binary PSK signaling and channel estimation errors. For a fixed average power and bit duration, in conjunction with pilot-assisted minimum mean-square error channel estimation, we show that the optimum coherent SD scheme coincides with that of the optimum noncoherent SD scheme with binary frequency-shift keying (BFSK) signaling, whereas the coherent MRC scheme coincides with the optimum noncoherent receiver (i.e., the square-law combiner) for BFSK. The optimum number of diversity channels, under an energy-sharing mode of operation, is also studied. Finally, we formulate the problem of optimal pilot placement, consider channel estimation with a practical pilot-symbol-assisted modulation technique, and present some numerical results illustrating the comparative performances of various SD receivers

Published in:

IEEE Transactions on Vehicular Technology  (Volume:56 ,  Issue: 3 )