By Topic

Modeling and Processing Measurement Uncertainty Within the Theory of Evidence: Mathematics of Random–Fuzzy Variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ferrero, A. ; Dipt. di Elettrotecnica, Politecnico di Milano ; Salicone, S.

Random-fuzzy variables (RFVs) are mathematical variables defined within the theory of evidence. Their importance in measurement activities is due to the fact that they can be employed for the representation of measurement results, together with the associated uncertainty, whether its nature is random effects, systematic effects, or unknown effects. Of course, their importance and usability also depend on the fact that they can be employed for processing measurement results. This paper proposes suitable mathematics and related calculus for processing RFVs, which consider the different nature and the different behavior of the uncertainty effects. The proposed approach yields to process measurement algorithms directly in terms of RFVs so that the final measurement result (and all associated available information) is provided as an RFV

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:56 ,  Issue: 3 )