By Topic

Single-Carrier Frequency-Domain Equalization With Noise Prediction for MIMO Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Zhu ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon ; Khaled Ben Letaief

Single-carrier frequency-domain equalization (SC-FDE) has recently been receiving much attention as an attractive method for broadband wireless communications for its advantages such as lower peak-to-average ratio and reduced sensitivity to carrier frequency offsets, when compared with orthogonal frequency-division multiplexing (OFDM) systems. In this paper, we investigate its combination with multi-input multi-output (MIMO) technology and propose two novel FDE-MIMO structures, which we refer to as FDE with noise prediction (FDE-NP) and FDE-NP with successive interference cancellation (FDE-NP-SIC). It is shown that the proposed schemes have lower complexity and achieve better performance and complexity tradeoff than the conventional FDE scheme with decision feedback processing. To evaluate the system performance, we will propose an accurate theoretical analysis based on the modified Chernoff bound (MCB) and show that it is not only applicable to the proposed FDE-NP and FDE-NP-SIC schemes, but also to general MIMO systems with equalization. By using the developed MCB along with simulation results, we will show that the proposed FDE-NP and FDE-NP-SIC schemes can achieve significant performance improvement over the conventional FDE MIMO schemes

Published in:

IEEE Transactions on Communications  (Volume:55 ,  Issue: 5 )