By Topic

Theory and Applications of Infinitesimal Dipole Models for Computational Electromagnetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mikki, S.M. ; Dept. of Electr. Eng., Univ. of Mississippi, University, MS ; Kishk, A.A.

The recently introduced quantum particle swarm optimization (QPSO) algorithm is employed to find infinitesimal dipole models (IDM) for antennas with known near-fields (measured or computed). The IDM can predict accurately both the near-fields and the far-fields of the antenna. A theory is developed to explain the mechanism behind the IDM using the multipole expansion method. The IDM obtained from single frequency solutions is extrapolated over a frequency range around the design frequency. The method is demonstrated by analyzing conducting- and dielectric-type antennas. A calibration procedure is proposed to systematically implement infinitesimal dipoles within existing method of moment (MoM) codes. The interaction of the IDM with passive and active objects is studied through several examples. The IDM proved to predict the interaction efficiently. A closed-form expression for the mutual admittance between similar or dissimilar antennas, with arbitrary orientations and/or locations, is derived using the reaction theorem

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 5 )