By Topic

Spatio-Temporal Feature-Extraction Techniques for Isolated Gesture Recognition in Arabic Sign Language

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shanableh, T. ; Dept. of Comput. Sci., American Univ. of Sharjah ; Assaleh, K. ; Al-Rousan, M.

This paper presents various spatio-temporal feature-extraction techniques with applications to online and offline recognitions of isolated Arabic Sign Language gestures. The temporal features of a video-based gesture are extracted through forward, backward, and bidirectional predictions. The prediction errors are thresholded and accumulated into one image that represents the motion of the sequence. The motion representation is then followed by spatial-domain feature extractions. As such, the temporal dependencies are eliminated and the whole video sequence is represented by a few coefficients. The linear separability of the extracted features is assessed, and its suitability for both parametric and nonparametric classification techniques is elaborated upon. The proposed feature-extraction scheme was complemented by simple classification techniques, namely, K nearest neighbor (KNN) and Bayesian, i.e., likelihood ratio, classifiers. Experimental results showed classification performance ranging from 97% to 100% recognition rates. To validate our proposed technique, we have conducted a series of experiments using the classical way of classifying data with temporal dependencies, namely, hidden Markov models (HMMs). Experimental results revealed that the proposed feature-extraction scheme combined with simple KNN or Bayesian classification yields comparable results to the classical HMM-based scheme. Moreover, since the proposed scheme compresses the motion information of an image sequence into a single image, it allows for using simple classification techniques where the temporal dimension is eliminated. This is actually advantageous for both computational and storage requirements of the classifier

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 3 )