By Topic

Hyperanalytic Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Olhede, S.C. ; Dept. of Math., Imperial Coll. London

A new threshold rule for the estimation of a deterministic image immersed in noise is proposed. The full estimation procedure is based on a separable wavelet decomposition of the observed image, and the estimation is improved by introducing the new threshold to estimate the decomposition coefficients. The observed wavelet coefficients are thresholded, using the magnitudes of wavelet transforms of a small number of "replicates" of the image. The "replicates" are calculated by extending the image into a vector-valued hyperanalytic signal. More than one hyperanalytic signal may be chosen, and either the hypercomplex or Riesz transforms are used, to calculate this object. The deterministic and stochastic properties of the observed wavelet coefficients of the hyperanalytic signal, at a fixed scale and position index, are determined. A "universal" threshold is calculated for the proposed procedure. An expression for the risk of an individual coefficient is derived. The risk is calculated explicitly when the "universal" threshold is used and is shown to be less than the risk of "universal" hard thresholding, under certain conditions. The proposed method is implemented and the derived theoretical risk reductions substantiated

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 6 )