Cart (Loading....) | Create Account
Close category search window
 

Adder Designs and Analyses for Quantum-Dot Cellular Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cho, H. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX ; Swartzlander, E.E.

Quantum-dot cellular automata (QCA) is an emerging nanotechnology for electronic circuits. Its advantages such as faster speed, smaller size, and lower power consumption are very attractive. The fundamental device, a quantum-dot cell, can be used to make gates, wires, and memories. As such it is the basic building block of nanotechnology circuits. While the physical nature of the nanoscale materials is complicated, the circuit designer can concentrate on the logical and structural design, so the design effort is reduced. Because of its novelty, the current literature shows only simple circuit structures. So this paper broadens the QCA circuit designs with larger circuits and shows analyses based on those designs. This paper proposes three kinds of adder designs in QCA. Ripple carry adders, carry lookahead adders, and conditional sum adders are designed and simulated with several different operand sizes. The designs are compared according to complexity, area, and delay

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.