By Topic

Reliability-Driven Gate Replication for Nanometer-Scale Digital Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chunhong Chen ; Dept. of Electr.& Comput. Eng., Windsor Univ., Ont.

To make digital circuits with unreliable devices more reliable has been a design challenge, especially for today's nanometer-scale technologies. In this paper, we discuss gate replication architecture towards increasing the reliability of individual logic gates. While this architecture is similar to, and a special case of, conventional N-modular redundancy scheme, we provide more interpretation and extend it to the situation where N is an even integer by using threshold logic gate instead of majority voter. We also study the reliability models for generic gates with single-electron tunneling (SET) technology. Both analysis and numerical evaluation suggest that while more redundancy leads to higher reliability in general, the improvement rate depends on individual gate failure rates

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 3 )