By Topic

The Design of Dual Work Function CMOS Transistors and Circuits Using Silicon Nanowire Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ahmet Bindal ; Comput. Eng. Dept., San Jose State Univ., CA ; Adithya Naresh ; Pearl Yuan ; Kim K. Nguyen
more authors

This exploratory study on vertical, undoped silicon nanowire transistors shows less power dissipation with respect to the bulk and SOI MOS transistors while yielding comparable performance. The design cycle starts with determining individual metal gate work functions for each nMOS and pMOS transistor as a function of wire radius to produce a 300 mV threshold voltage. Wire radius and effective channel length are both varied until a common body geometry is determined for both nMOS and pMOS transistors to limit off currents under 1 pA while producing highest on currents. DC characteristics of the optimum n and p-channel transistors such as threshold voltage roll-off, DIBL and subthreshold slope are measured; simple CMOS gates including an inverter, 2- and 3-input nand, nor, and xor gates, and full adder are built to measure the transient performance, power dissipation and layout area. Postlayout simulation results indicate that the worst case delay for a full adder circuit is 8.5 ps at no load and increases by 0.15 ps/aF; worst case power dissipation of the same circuit is 23.6 nW at no load and increases by 4.04 nW/aF at 1 GHz. The full adder layout area occupies approximately 0.11 mum2

Published in:

IEEE Transactions on Nanotechnology  (Volume:6 ,  Issue: 3 )