By Topic

Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leshem, A. ; Sch. of Eng., Bar-Ilan Univ., Ramat-Gan ; Naparstek, O. ; Nehorai, Arye

In this paper, we use an information theoretic approach to design radar waveforms suitable for simultaneously estimating and tracking parameters of multiple extended targets. Our approach generalizes the information theoretic water-filling approach of Bell to allow optimization for multiple targets simultaneously. Our paper has three main contributions. First, we present a new information theoretic design criterion for a single transmit waveform using a weighted linear sum of the mutual informations between target radar signatures and the corresponding received beams (given the transmitted waveforms). We provide a family of design criteria that weight the various targets according to priorities. Then, we generalize the information theoretic design criterion for designing multiple waveforms under a joint power constraint when beamforming is used both at the transmitter and the receiver. Finally, we provide a highly efficient algorithm for optimizing the transmitted waveforms in the cases of single waveform and multiple waveforms. We also provide simulated experiments of both algorithms based on real targets and comment on the generalization of the proposed technique for other design criteria, e.g., the linearly weighted noncausal MMSE design criterion

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:1 ,  Issue: 1 )