By Topic

All-IP 4G Network architecture for efficient mobility and resource management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this article, we investigate 4G network architecture and consider two underlying layers: PHY and MAC. We compare two models of wireless access network: pure all-IP and subnet based networks. The pure all-IP model is simple and cost-efficient but causes implementation issues of mobility management and resource coordination. In contrast, the subnet based network enables layer 2 and layer 3 handoffs to be executed independently, deploying several access points under an access router. Further, to handle various cases efficiently according to traffic class and mobility, we present an advanced model of a hierarchical cellular system that combines multiple access techniques of OFDMA and FH-OFDMA with microcells and macrocells. Finally, as an integrated approach to support diverse QoS requirements, we consider an IP-triggered resource allocation strategy (ITRAS) that exploits IntServ and DiffServ of the network layer to interwork with channel allocation and multiple access of MAC and PHY layers, respectively. These cross layer approaches shed light on designing a QoS support model in a 4G network that cannot be handled properly by a single layer based approach

Published in:

Wireless Communications, IEEE  (Volume:14 ,  Issue: 2 )