By Topic

A new 4G architecture providing multimode terminals always best connected services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen YiPing ; Shanghai Jiao Tong Univ. ; Yang Yuhang

In recent years, wireless communication technology has undergone a tremendous change. Various radio access technologies have been deployed all over the world. The 4G mobile system was proposed to integrate all of these radio access technologies into a common network called the open wireless architecture (OWA) platform. As one of the main features of a 4G mobile system, always best connected (ABC) services enable users to choose the best available access networks in a way that best suits their needs. A new architecture capable of supporting ABC service is proposed in this study. There are three parts to the proposed architecture. First, a novel access discovery mechanism that integrates service location protocol and location-based service is presented. Second, a new personalized network selection scheme is put forward. Users can select their personalized "best" network by changing weight factors and constraints in a single objective optimization problem. Third, a seamless handover mechanism based on Mobile IPv6 is proposed. The mechanism supports end-to-end quality of service. Through analysis, this architecture demonstrates that it has benefits not only for network operators, but also for users

Published in:

Wireless Communications, IEEE  (Volume:14 ,  Issue: 2 )